
Monitoring with Grafana
Marcus Olsson
Developer Advocate

$ # Install Docker and Docker Engine

$ git clone https://github.com/grafana/tutorial-environment

$ cd tutorial-environment

$ docker-compose up -d

While you wait …

● Developer Advocate at Grafana
○ Developer Experience for plugin authors
○ Educating and supporting the Grafana community

● Software Developer since 2011
○ Frontend, backend, leftend and rightend
○ Product development, data engineering, SRE

Who am I?

● What is monitoring?
● Types of data
● Exploring data
● Building dashboards
● Annotations, variables, and links
● Creating alerts
● Best practices for dashboard design

What we’ll cover today

What do you hope to learn today?

● Graphs on a TV on the walls of Engineering?
● Waking up to ~20 emails about CPU usage?
● Pinging services to make sure they’re alive?

What is monitoring?

“Monitoring tells you whether the system works.
Observability lets you ask why it’s not working.”

 Baron Schwartz

Why do we monitor?
● Make sure system works as intended
● Get insights in how the system is being used
● Fix problems before customers tell us about them
● Outage cost is more expensive than investing in quality
● Make knowledge available to the rest of the organization
● Make decisions on data rather the gut feeling

Monitoring is changing
● Infrastructure is becoming more dynamic

○ Servers are becoming cattle, rather that pets
● Teams are deploying changes several times a day

○ Less up-front testing
● Monitoring tools need to keep up

Why do you want to start monitoring?

If you already do, why?

Process

How do I know my process is working?

You can poke it with a stick ...
(black box monitoring)

Process

… or have it tell you how it’s doing
(white box monitoring)

Process

“I’m having some
trouble connecting
to the database.”

Extracting data from a running process

Process

Metrics

Logs

Traces

Textual data for understanding what happened

Numeric data for easy aggregation

Execution paths for individual requests

Extracting data from a running process

Process

Metrics

Logs

Traces

Pros: Lets you see exactly what the process was
doing at a given time
Cons: Costly to store and to query

Pros: Lets you see trends and patterns. Less
data, faster queries
Cons: Needs to be configured up-front

Pros: Lets you see the path a request took
through the system, and where time was spent
Cons: Costly to store and query

🤯

https://landscape.cncf.io

https://landscape.cncf.io

What data are you monitoring on?

How do you get that data?

Grafana
An open composable observability platform

● Aims to integrate rather than replace
● Ships with integrations for popular projects
● Offers a plugin platform for integrating with other projects

○ Browse the plugins written by the Grafana community at
grafana.com/plugins

An open composable observability platform

https://grafana.com/plugins

Choose your own stack

$ # Install Docker and Docker Engine

$ git clone https://github.com/grafana/tutorial-environment

$ cd tutorial-environment

$ docker-compose up -d

Browse to http://localhost:8081

Our application

A tour of Grafana

Demo

● Data sources bring your data into Grafana
● Data source options configures how to connect to a data

source
● The Query editor configures what data you want to display

Data sources

● Panels consist of a query and a visualization
● Display options configure the currently selected

visualization type
○ For example, whether you want to show a table header or not

● Field options configure how the data is displayed
○ For example, if the data ranges from 01, you want to display it

as percentage (12% regardless of the visualization type

Panels

● Dashboards consist of multiple panels
● All panels in a dashboard share time range

○ Zooming into one changes the time range for all panels

Dashboards

Metrics

● A quantifiable, single type of data that’s changing over time
● For example:

○ Temperature
○ Churn rate
○ Logged-in users

Metrics

● A counter starts at zero and is only incremented
● The rate of change is often more useful, and can be

calculated using the counter value
○ Example: Requests per second for the last 24 hours

Metric type: Counter

● A gauge is a snapshot in time of the current state
● Single numerical value that can go up and down
● For example:

○ 21°C at 1300
○ 25°C at 1400
○ 23°C at 1500

Metric type: Gauge

Time series

● Measuring a metric over time results in one or more time
series.

● A sequence of measurements ordered in time.
● Each measurement consists of a point in time, and a value.
● Usually measurements are taken at regular intervals, such as

every 30 second, hourly, or every quarter
○ Otherwise, we’re probably looking at event data, more fitting as

logs

Time series

Raw time series data

Example: Temperature

Example: Spotify share price

● Each time series has a unique name
○ stats.sweden.stockholm.temperature
○ temperature{country=”sweden”, city=”stockholm”}

● Changing part of the identifier means creating a new time
series

● Making things like user id part of the name could cause an
explosion of time series, affecting performance.
○ Cardinality problem

The cardinality problem

● Not relational data (no joins)
● Specialized and optimized
● More efficient at storing time series data

○ Prometheus uses around 12 bytes per measurement on
average

● Better at querying time series data

Time series databases (TSDB

Metrics using Prometheus

Demo

Exercise: Create a dashboard to display Prometheus metrics

Data source URL http://prometheus:9090

Useful queries:

rate(tns_request_duration_seconds_count[1m])

histogram_quantile(0.95, rate(tns_request_duration_seconds_bucket[1m]))

http://prometheus:9090

Logs

● Shows you what’s happening inside the application
● Append-only text
● Typically large volumes

Logs

● Usually for applications, not so much for resources, like CPU
or disk utilization.

● Be mindful about what you log
○ Avoid excessive logging

■ Makes it difficult to find the logs that matters

○ Storage may be cheap, but your time is not

Logs

User 752 bought 3 tickets

Unstructured logs

Structured logs
{msg: “bought tickets”, user: “752”, count: 3}

Logs using Loki

Demo

Exercise: Add a Logs panel to display Loki logs in the dashboard

Data source URL http://loki:3100

Useful queries:

{filename="/var/log/tns-app.log"}

{filename="/var/log/tns-app.log"} |= "error"

Troubleshoot without leaving Grafana

Annotations

● Add context to a visualization by annotating it
● Annotate events or entire regions
● Query annotations from data sources

Annotations

Annotations

Demo

Exercise: Annotate the graph panel with errors from Loki

Create an annotation query

{filename="/var/log/tns-app.log"} |= "error"

Dynamic dashboards

● In practice, most services will be monitored in similar ways
● Avoid duplicated dashboards by using variables
● Lets you create templated queries and panels

Dynamic dashboards

Variables

Demo

Exercise: Create a variable for selecting status code

1. Create a Query variable called status_code

2. Select Prometheus as the data source

3. Enter the following query

label_values(tns_request_duration_seconds_count, status_code)

4. Click Add and save the dashboard

5. Change the panel query to

rate(tns_request_duration_seconds_count{status_code="${status_code}"}[1m])

● Avoid duplicated panels by repeating them for every value in
a variable

Repeated panels

Repeated panels

Demo

Exercise: Repeat panel for multiple status codes

1. Update the status_code variable to be Multi-value

2. Click Update

3. Enter Edit mode for the panel

4. In the Panel editor, select Repeat options

5. Select your variable and click Apply

Dashboard design

● Consider your target audience
● How much details do they need?
● Questions to ask yourself:

○ What issue let them to open this dashboard?
○ What questions should this dashboard answer?
○ When would the user want this information?

Keep your user in mind

● Start small
○ Resist the urge to fill up your dashboard at first
○ Make sure you understand each panel before adding another

● Keep it simple
○ Every detail you add, adds to the complexity of the dashboard
○ Avoid putting to much information on a single dashboard

● Sort by importance
○ Not all panels are equally important

Monitor with intent

Will you understand the dashboard in
the middle of the night during an
outage?

Links

● Prefer smaller dashboards with clear focus and link them
together

● Grafana lets you link dashboards together using three types
of links: dashboard links, panel links, and data links.

Links

● Dashboard links
○ Link to other dashboards or external websites

● Panel links
○ Same as dashboard link but in the context of a panel

● Data links
○ Use values from your query result in your link

Links

Comparing link types

Demo

Alerting

● Alerts are not warnings: They are calls for help
○ Only alert on real problems

● Avoid alert fatigue
● They’re simple
● Requires a human
● Includes actionable information

What makes a good alert?

● There are thousands of reasons for a website to not respond
● Alerting on symptoms always catch the problem
● Alerting on causes might catch the problem

Alert on symptoms, not causes

The life of an alert in Grafana

OK Pending AlertingUnknown

Alerts can be at any timePaused

Create an alert

Demo

Exercise: Create an alert

1. Create a request box at https://rbox.app

2. Create a webhook notification channel with the URL to your request box

3. Enter panel edit mode and click the Alerts tab under the graph

4. Create an alert that evaluates every 5s for 5s

5. Select your webhook as notification channel

6. Make the alert trigger and watch the request box

https://rbox.app

What would you alert on?

What should you monitor?

● Created by Brendan Gregg
● For every resource:

○ Utilization
○ Saturation
○ Errors

USE

http://www.brendangregg.com/usemethod.html

● Created by Tom Wilkie
● For every service:

○ Rate
○ Errors
○ Duration

RED

● Created at Google
● For every system:

○ Latency
○ Traffic
○ Errors
○ Saturation

Golden signals

What would you monitor?

Dashboard design

● Be consistent
○ Use same colors and styles for the same concepts across

dashboards
○ During an outage, you’re not always thinking straight. Make it

easy to understand.

Dashboards

● Will I still understand this panel a month from now?
● Use units
● Label your axes
● Give your panels proper titles
● Consider shared crosshairs
● Keep metrics of different scales in separate panels

○ Reads can be order of magnitudes larger than writes
● Combine aggregates for better insights

Panels

● Avoid overusing colors
● Colors have meaning

○ Traffic lights
○ Green indicates something good, such as free disk space
○ Red indicates something bad, grabs your attention, and should

be used for critical things
● Consider color blindness

Colors

Grafana Cloud

https://grafana.com/signup

Monitoring doesn’t fix your problems.

It shows them to you.

marcus.olsson@grafana.com

@marcusolsson

Thank you!

Bonus:
Plugins

● Three types of plugins
○ Data sources
○ Panels
○ Apps

● Browse published plugins on https://grafana.com/plugins

Plugins

https://grafana.com/plugins

Install a plugin

Demo

Exercise: Install a plugin

Find a plugin you find interesting on https://grafana.com/plugins

Install in the tutorial environment:

docker-compose exec grafana /bin/bash

grafana-cli plugins install <plugin id>

https://grafana.com/plugins

